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Structure-derived substitution matrices for alignment of distantly
related sequences

Andreas Prlić, Francisco S.Domingues and matrices. Since the goal is to exploit structural information
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were chosen to have high structural but low sequence similarity.
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the extent to which phylogenetic distances within the data setA-5020 Salzburg, Austria
influence results, a second matrix is calculated by excluding

1To whom correspondence should be addressed. E-mail: pairs with no or unclear evolutionary relationships. The align-
sippl@came.sbg.ac.at ment accuracy of sequence alignments created using both
Sequence alignment is a standard method to infer evolution- matrices is compared with results from 12 other previously
ary, structural, and functional relationships among published matrices.
sequences. The quality of alignments depends on the substi- Structure comparison can have multiple solutions (Boutonnet
tution matrix used. Here we derive matrices based on et al., 1995; Feng and Sippl, 1996; Godzik, 1996). It is difficult
superimpositions from protein pairs of similar structure, to judge which of the alternative solutions is the most relevant
but of low or no sequence similarity. In a performance in terms of evolution. The question arises of which one should
test the matrices are compared with 12 other previously be used for the compilation of substitution matrices. Here we
published matrices. It is found that the structure-derived use the alignment having the largest number of equivalent
matrices are applicable for comparisons of distantly related residues to derive the matrices. However, in performance
sequences. We investigate the influence of evolutionary tests alignment accuracy is measured by comparing sequence
relationships of protein pairs on the alignment accuracy. alignments with all alternative solutions.
Keywords: alignment accuracy/protein evolution/sequence In the following sections we describe how the amino
alignment/structure alignment/substitution matrix acid substitution matrices are derived and discuss differences

between matrices derived from homologous pairs and matrices
derived from homologous as well as analogous pairs. We apply
the matrices in a performance test.Introduction

By the end of 1999, 26 genomes have been fully sequenced
and more than 100 additional genome projects are in progress, Methods
causing sequence databases to explode (Kyrpides, 1999). For The data set of protein pairs
a newly determined sequence, structural, functional and other

We need a data set for two purposes: to derive amino acidbiologically relevant information can be inferred if evolu-
substitution matrices and to evaluate alignment accuracy. Fortionarily related sequences are found (Scharf et al., 1994;
the first task, sequence similarity among two proteins A andTeichmann et al., 1999). Sequence alignment is a standard
B that are structurally related has to be low. For the secondmethod to search for such relationships (Pearson and Lipman,
task it is important that there is no sequence similarity of one1988; Altschul et al., 1990, 1997).
pair A–B to any other pair C–D in the set. Otherwise, althoughThe success and reliability of sequence comparisons depend
in the jack-knife test the pair A–B is removed, there couldon, among other ingredients, the substitution matrix used
still be a pair C–D related to A–B, resulting in in a statistical(Henikoff and Henikoff, 1993; Vogt et al., 1995). Popular
bias. A data set that correlates with this criterion was publishedmatrices such as PAM, BLOSUM and the GONNET matrix
recently (Domingues et al., 2000). In summary, the procedureare based on sequence alignments (Dayhoff et al., 1978;
to derive the data set is as follows: (i) starting from the PDBGonnet et al., 1992; Henikoff and Henikoff, 1992). The
(Berman et al., 2000), a set of proteins is prepared, so thataccuracy of these alignments is important for the quality of
any proteins A and B taken from the set have �30% sequencethe matrices. This in particular is the case for large evolutionary
identity; (ii) these proteins are grouped into structurally similardistances, where sequence alignments become less reliable.
subsets using PROSUP (Feng and Sippl, 1996); and (iii) fromStructure alignments are generated independently of
these groups representative pairs of superimposed structurallysequence similarity. They are reliable even in the case of
related proteins are selected after visual inspection.distant evolutionary relationships. Several structure-based mat-

After this procedure, a data set of 122 protein pairs (Table I)rices have been published (Risler et al., 1988; Johnson and
is obtained having the following characteristics: (i) only 19Overington, 1993; Naor et al., 1996; Russell et al., 1997). An
structurally related pairs have significant sequence similarityimportant issue in structure comparison is the definition of
within the pair that can be detected using SSEARCH (Smithstructural equivalence of residue pairs. Here, structural equival-
and Waterman, 1981; Pearson, 1991), but ID �30%. In termsence is defined by close Cα and Cβ distances, corresponding
of the statistics this means that there is a strong relation into residues that occupy similar positions in the structures and
terms of equivalent position and a very low if not negligibleresemble each other in their side-chain orientation.
correlation in terms of sequence identity; (ii) there is noA data set of superimposed protein pairs (Domingues et al.,

2000) is used for the derivation of amino acid substitution detectable sequence similarity between proteins that belong to
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acid pair Ai, Bj are separated by less than 5 Å, they are
Table I. Set of protein pairs used in this study. The name of a protein is considered to occupy equivalent positions. The frequency of
given by its PDB code (Berman et al., 2000), its chain identifier and the

occurrence fij of these equivalent positions corresponds to themodel number
observed substitution frequency of amino acid pair Ai, Bj.

1 193l.–.– 153l.–.– 62 1hrd.A.– 1leh.A.– To calculate the matrix the formalism of Henikoff is used
2 1aba.–.– 1gp1.A.– 63 1i1b.–.– 4fgf.–.– (Henikoff and Henikoff, 1992).
3 1acf.–.– 1pne.–.– 64 1idk.–.– 1air.–.– The relative frequency qij of occurrence of an amino acid4 1afi.–.1 1aps.–.1 65 1iow.–.– 1bnc.A.–

pair Ai, Bj is5 1agq.D.– 1tgj.–.– 66 1irs.A.– 1mai.–.–
6 1aiz.B.– 1rcy.–.– 67 1kpc.D.– 1hxq.B.–

fij7 1apm.E.– 1erk.–.– 68 1lea.–.– 1ruo.B.–
qij � (1)8 1apm.E.– 1irk.–.– 69 1lmb.3.– 1pou.–.1

20 i
9 1aps.–.1 1spb.P.– 70 1lpe.–.– 1nbb.B.– Σ Σ fij10 1ash.–.– 1bin.A.– 71 1lpe.–.– 1vlt.A.– i � 1 j � 1

11 1ash.–.– 1bvd.–.– 72 1lti.D.– 1asz.A.–
12 1ash.–.– 1cpc.A.– 73 1lti.D.– 1bcp.L.– where fij is the observed substitution frequency of pair Ai, Bj.13 1asz.A.– 1bcp.L.– 74 1lti.D.– 1prt.B.–

The frequency of occurrence of amino acid Ai in a pair Ai, Bj is14 1bbh.B.– 1nbb.B.– 75 1lti.D.– 1tii.D.–
15 1bbp.D.– 1hbq.–.– 76 1ndh.–.– 1fnb.–.– Σ16 1bcp.L.– 1prt.B.– 77 1ndh.–.– 2pia.–.–

j � i
qij

(2)17 1bdi.A.– 2dri.–.– 78 1oun.A.– 1std.–.– pi � qii �
18 1bdm.B.– 1bhs.–.– 79 1phd.–.– 2hpd.B.– 2
19 1bdm.B.– 6ldh.–.– 80 1plq.–.– 2pol.A.–
20 1bfm.A.1 1taf.B.– 81 1pot.–.– 1sbp.–.– and the expected frequency eij for a substitution of a pair Ai,
21 1bin.A.– 1bvd.–.– 82 1ptv.A.– 1ytn.–.– Bj is then
22 1bin.A.– 2hbg.–.– 83 1qpa.A.– 2cyp.–.–
23 1btn.–.– 1dyn.B.– 84 1ris.–.– 1spb.P.– if i � j: eij � pipj;
24 1btn.–.– 1irs.A.– 85 1rnl.–.– 1dts.–.–
25 1btn.–.– 1mai.–.– 86 1ryt.–.– 1afr.F.– if i � j: eij � pipj � pjpi � 2 pipj
26 1bvd.–.– 2hbg.–.– 87 1ryt.–.– 1�ik.A.–

Finally, the logarithm of the odds matrix is calculated by27 1cew.I.– 1mol.A.– 88 1ryt.–.– 1�sm.–.–
28 1cew.I.– 1oun.A.– 89 1sbp.–.– 2abh.–.–

qij29 1cnv.–.– 1nar.–.– 90 1spb.P.– 1nue.A.–
sij � log2 ( ) (3)30 1cpc.A.– 1col.A.– 91 1ste.–.– 1tss.A.–

eij31 1cpc.A.– 1cpc.B.– 92 1ste.–.– 3ull.A.–
32 1cpc.A.– 2hbg.–.– 93 1taf.A.– 1bfm.A.1

The relative entropy H of a matrix, also called the average33 1ctj.–.– 1cxc.–.– 94 1taf.A.– 1taf.B.–
mutual information per residue, is calculated according to34 1ctj.–.– 2mta.C.– 95 1tii.D.– 1asz.A.–

35 1dat.–.– 1afr.F.– 96 1tii.D.– 3ull.A.– Altschul (1991):
36 1dat.–.– 1ryt.–.– 97 1urn.A.– 1spb.P.–
37 1dat.–.– 1�ik.A.– 98 1vlt.A.– 1nbb.B.–

H � Σ
20

i � 1
Σ

i

j � 1

qij sij (4)38 1den.–.1 1tcp.–.1 99 1wba.–.– 1i1b.–.–
39 1dvr.A.– 1dts.–.– 100 1wba.–.– 4fgf.–.–
40 1dyn.B.– 1irs.A.– 101 1wkt.–.1 1amm.–.–

The matrices41 1dyn.B.– 1mai.–.– 102 1�ik.A.– 1afr.F.–
42 1eaf.–.– 3cla.–.– 103 1�ik.A.– 1�sm.–.– The data set of 122 protein pairs yields 13 908 structurally
43 1ece.A.– 1edg.–.– 104 1�sm.–.– 1afr.F.– equivalent amino acid pairs. The values sij are derived from
44 1ecm.B.– 1csm.B.– 105 2alp.–.– 1hav.A.– these substitutions according to Equation 3, resulting in the45 1elg.–.– 1hav.A.– 106 2blt.B.– 3pte.–.–

Structure Derived Matrix (SDM, Table II).46 1elg.–.– 2alp.–.– 107 2dri.–.– 1rnl.–.–
CATH classifies structures according to different level of47 1erk.–.– 1irk.–.– 108 2hhm.A.– 1spi.D.–

48 1esl.–.– 1lit.–.– 109 2pia.–.– 1fnb.–.– structural similarity and evolutionary relationship (Orengo
49 1eur.–.– 2sim.–.– 110 2pii.–.– 1aps.–.1 et al., 1997). Proteins that share the same H-level (‘H’ for
50 1fb4.H.– 1fna.–.– 111 3nll.–.– 1qrd.B.–

homology) are assumed to be evolutionarily related and share51 1fb4.H.– 1tup.A.– 112 3ull.A.– 1asz.A.–
a similar fold. Such proteins are called ‘homologous’. Proteins52 1fec.A.– 1nhq.–.– 113 3ull.A.– 1bcp.L.–

53 1fmb.–.– 1sme.B.– 114 6ldh.–.– 3nll.–.– that share the same fold, but for which no evidence for an
54 1fna.–.– 1msp.A.– 115 1tdj.–.– 2tys.B.– evolutionary relationship can be found, are classified in differ-
55 1gmf.B.– 1rcb.–.– 116 1tdj.–.– 1psd.A.– ent H-levels. These are called ‘analogous’.56 1gsa.–.– 1bnc.A.– 117 1ak1.–.– 2dri.–.–

A second matrix, called the Homologous Structure Derived57 1gsa.–.– 1iow.–.– 118 1fui.A.– 1bhs.–.–
Matrix (HSDM, Table III), is calculated from the subset of 7758 1gtq.A.– 1gtp.A.– 119 1aoy.–.1 2dtr.–.–

59 1hce.–.– 1i1b.–.– 120 1agj.A.– 1elg.–.– proteins, which are classified as homologous by CATH (9947
60 1hce.–.– 4fgf.–.– 121 1ulo.–.– 2ayh.–.– amino acid pairs).
61 1hfc.–.– 1iag.–.– 122 1bnk.A.– 1fmt.A.–

Using PHYLIP (Felsenstein, 1985), a phylogenetic inference
package, a tree diagram is derived to display the relationships
among amino acids.one pair A–B and to those from another pair C–D; this ensures

that there is no statistical bias in the jack-knife test. Performance test
Compilation of substitution matrices The 122 protein pairs used to derive SDM and HSDM are

applied in a jack-knife test, to estimate the accuracy ofWhen two protein structures are aligned, frequently alternative
structure alignments are obtained. The one with the highest alignments obtained from these matrices. Hence, for a pair of

proteins being aligned, unique SDM and HSDM matrices arenumber of structurally equivalent residues is used to calculate
amino acid substitutions. If the Cα and Cβ atoms of an amino generated where substitution counts from this particular pair
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Table II. Lower left diagonal, observed amino acid substitutions over all of the data set of structure alignments; upper right diagonal, the structure-derived
substitution matrix (SDM) derived from these observed frequencies (values in the matrix are scaled by a factor of 2)

A R N D C Q E G H I L K M F P S T W Y V

2.09 –0.50 –0.57 –0.73 0.33 –0.75 –0.12 0.27 –1.42 –0.97 –0.39 –0.38 –0.04 –0.76 –0.53 0.34 0.13 –0.66 –1.25 0.02 A
2.87 0.60 0.13 –1.30 0.13 0.99 –0.96 0.54 –1.40 –1.19 1.42 –0.63 –1.40 0.21 –0.06 –0.15 –0.04 –0.75 –1.52 R

A 243 3.60 1.78 –2.08 0.33 –0.16 0.79 0.76 –2.43 –2.10 0.83 –2.01 –2.25 –1.10 0.40 0.30 –2.89 –0.36 –2.17 N
R 103 86 4.02 –2.51 0.34 1.20 –1.20 –0.01 –2.77 –2.65 0.66 –2.58 –2.19 0.72 0.71 –0.75 –1.91 –1.21 –2.02 D
N 81 63 72 6.99 –0.83 –1.97 –2.11 –1.50 0.13 –0.31 –2.19 1.04 1.13 –2.19 0.31 –0.59 –0.76 0.13 0.34 C
D 100 70 100 142 2.60 1.23 –0.12 –0.46 –1.47 –1.49 0.92 –0.13 –2.31 0.24 1.04 0.60 –0.81 –0.61 –1.38 Q
C 44 13 8 9 37 2.97 –0.41 –0.62 –1.81 –2.11 1.11 –1.86 –1.61 –0.26 0.31 –0.21 –2.70 –1.64 –1.84 E
Q 74 52 45 59 12 48 4.36 –0.40 –2.93 –1.98 –0.71 –1.86 –2.67 –0.04 0.29 –0.81 –1.21 –1.62 –1.96 G
E 148 113 61 128 13 96 141 5.89 –1.76 –0.93 0.31 –1.04 –0.22 –1.44 –0.74 –0.52 –1.48 –0.12 –0.35 H
G 191 65 96 63 14 68 99 292 2.76 1.56 –1.81 0.99 0.76 –2.00 –1.75 –0.96 0.25 0.08 1.94 I
H 37 38 33 33 6 21 32 39 60 2.43 –1.96 1.61 1.23 –1.56 –2.30 –0.86 –0.14 0.70 0.81 L
I 123 55 31 36 30 42 60 46 24 163 2.91 –1.62 –2.41 –0.19 –0.06 –0.10 –1.94 –1.72 –1.27 K
L 216 85 50 54 37 60 78 92 46 310 302 3.75 0.80 –1.09 –1.34 –1.58 0.87 –0.41 0.61 M
K 135 131 86 106 12 86 148 89 44 60 82 138 3.28 –0.91 –1.11 –0.69 2.29 1.96 0.51 F
M 66 28 14 15 16 26 23 26 12 69 123 25 35 5.45 –0.29 0.93 –5.34 –1.98 –1.11 P
F 84 35 21 28 27 20 41 32 26 104 176 31 41 79 2.36 1.20 –1.18 –1.56 –1.11 S
P 64 43 22 54 6 34 46 56 12 28 47 47 15 26 83 2.04 –0.57 –0.41 0.05 T
S 164 74 70 102 27 85 106 119 29 58 69 93 26 46 43 102 6.96 2.15 –1.09 W
T 146 69 65 59 19 70 85 78 30 73 109 88 23 51 63 131 84 3.95 0.21 Y
W 31 20 6 11 5 12 10 19 6 31 39 13 15 40 2 16 19 36 2.05 V
Y 63 39 36 35 17 32 36 41 24 73 130 35 24 89 16 35 50 34 79
V 204 62 40 55 38 51 70 76 46 289 281 85 71 112 45 85 122 23 90 177

Table III. Lower left diagonal, observed amino acid substitutions over the subset of homologous pairs; upper right diagonal, the substitution matrix derived
from homologous structural pairs (HSDM) (values in the matrix are scaled by a factor of 5)

A R N D C Q E G H I L K M F P S T W Y V

5.50 –2.24 –1.77 –2.38 0.45 –2.16 –0.47 0.63 –3.01 –1.72 –1.09 –1.22 0.16 –2.42 –1.11 1.27 0.60 –2.61 –4.22 0.16 A
8.59 0.24 –0.33 –6.29 –0.74 2.83 –3.39 0.70 –3.93 –2.83 3.89 –1.43 –4.36 1.31 –0.50 0.34 1.02 –1.01 –3.80 R

A 181 10.00 4.07 –6.53 1.42 –0.39 1.16 1.77 –5.78 –5.64 1.64 –4.67 –6.22 –3.23 1.54 1.14 –6.29 –0.93 –5.65 N
R 63 72 11.01 –6.98 1.10 2.41 –3.91 0.32 –6.18 –7.41 1.53 –7.88 –5.06 0.81 2.34 –1.36 –5.63 –3.85 –6.10 D
N 58 39 65 19.05 –2.47 –4.70 –5.70 –5.95 –0.13 –0.82 –6.65 3.50 1.72 –6.70 1.08 –1.89 –3.01 –0.44 1.32 C
D 68 46 73 122 7.85 3.16 –0.24 –2.24 –3.26 –4.56 3.24 –1.76 –5.54 1.30 2.59 1.08 –4.30 –1.73 –4.97 Q
C 30 6 5 6 33 8.43 –1.80 –1.29 –5.89 –5.62 3.08 –3.94 –4.44 –0.43 0.42 –0.61 –6.28 –4.50 –4.23 E
Q 50 31 36 44 8 40 11.64 –1.24 –8.58 –6.55 –1.82 –5.29 –7.46 –1.79 0.63 –2.24 –4.77 –4.34 –5.32 G
E 97 78 43 81 9 64 102 15.72 –4.44 –2.49 –0.17 –3.66 0.25 –3.55 –2.38 –1.14 –5.71 1.17 –1.63 H
G 144 42 68 43 10 51 63 259 6.74 3.86 –4.82 2.94 2.30 –4.04 –4.67 –3.03 –0.26 –0.08 5.23 I
H 27 23 23 24 3 12 21 27 44 6.38 –5.91 4.32 3.90 –2.88 –6.22 –2.40 –0.58 1.81 2.28 L
I 96 36 24 29 20 31 33 29 16 112 8.23 –5.47 –6.19 –1.21 –0.27 –0.37 –5.45 –4.03 –3.57 K
L 150 60 35 35 26 37 49 55 30 215 218 10.21 2.66 –2.02 –3.92 –5.18 4.28 –4.95 1.18 M
K 89 92 58 73 7 66 99 64 25 39 48 103 9.14 –2.96 –5.03 –4.00 6.49 5.38 0.52 F
M 49 20 11 9 13 15 17 18 7 52 90 14 28 13.32 –1.28 2.44 –11.46 –7.41 –2.31 P
F 54 21 14 21 16 14 25 21 19 75 134 20 31 60 6.35 3.09 –4.44 –4.17 –2.69 S
P 52 37 17 38 4 29 35 37 9 25 42 32 13 18 69 6.33 –3.55 –2.92 –0.23 T
S 123 49 56 80 20 59 67 88 18 39 45 62 17 23 31 76 18.08 6.79 –2.13 W
T 110 54 52 47 13 47 57 58 21 48 75 60 14 26 51 95 73 10.92 0.66 Y
W 19 16 5 7 3 6 7 11 3 19 26 8 14 30 2 9 10 27 5.28 V
Y 39 31 27 23 11 22 23 30 20 50 93 25 10 66 9 24 28 29 66
V 153 45 30 36 30 30 51 56 29 223 212 57 50 72 39 63 87 18 68 138

are excluded from the statistics. In order to test the performance of correctly aligned residues, when compared with the sequence
alignment, is used to assess alignment accuracy.of different substitution matrices, an implementation of the

Needleman and Wunsch algorithm is used to construct the The alignment accuracy is estimated in the same way for
12 previously reported matrices (Dayhoff et al., 1978; Rislersequence alignments (Needleman and Wunsch, 1970; Gotoh,

1982), where end gaps are not penalized. Alignment accuracy et al., 1988; Gonnet et al., 1992; Henikoff and Henikoff, 1992;
Johnson and Overington, 1993; Naor et al., 1996; Russellis measured in terms of residue pairs that are placed at

equivalent structure positions and are also aligned in the et al., 1997). For each matrix the optimum combination of
gap opening and gap extension penalties is determined as thesequence alignment. The accuracy is expressed as a percentage

of the length of the structure alignment (Vogt et al., 1995). one that corresponds to the maximum average alignment
accuracy obtained from the pairs. Optimum gap openingStructure alignments are calculated using the program PRO-

SUP (Feng and Sippl, 1996). Each alternative is considered penalties are tested for each matrix in the range from 0 and
20 and extension penalties between 0 and 10.as a possible solution for a structure alignment in the evaluation.

The structure alignment (Lx) which yields the highest number To investigate if there are differences between local and
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Table IV. Frequency of occurrence (Equation 2) of amino acids in the
substitutions used to calculate SDM compared with the values published by
Johnson and Overington (1993)

SDM Johnson and Overington

A 9.2 8.4
R 4.8 3.7
N 3.9 4.7
D 5.0 6.0
C 1.5 1.2
Q 3.7 3.6
E 6.0 5.1
G 6.8 8.8
H 2.4 2.2
I 6.7 5.2
L 9.7 7.6
K 6.0 5.9
M 2.6 1.9
F 4.3 3.9
P 3.0 4.5
S 5.7 7.4
T 5.5 6.3
W 1.5 1.6
Y 3.8 3.8
V 7.9 7.8

global alignment algorithms, parameter optimization was done
for a few matrices using a local alignment algorithm. The results
are similar to those from global alignment, not penalizing end
gaps (data not shown).

Results

The substitution matrices
Fig. 1. Tree diagrams for (a) Structure-Derived Matrix (SDM), (b) HSDMThe relative frequencies of the amino acids in the data set are and (c) GONNET matrix.

similar to others reported in the literature (Table IV; Johnson
and Overington, 1993). The clustering of the amino acids in
the dendrogram tree is similar for the structure-derived matrices Table V. Results of parameter optimizationa

(Figure 1). Two groups are obtained, one consisting of hydro-
Open Extension % Correctly Namephobic amino acids and the other containing polar and charged

amino acids. The most pronounced differences from the tree 19.0 0.8 33.7 HSDM
obtained for the GONNET matrix are the position of tryptophan 6.6 0.6 33.0 SDM
and cysteine. In the GONNET matrix these two are grouped 8.5 0.8 32.6 GONNET

14.5 2.0 31.2 NAORseparately from the other amino acids, whereas they belong
11.5 1.1 30.7 BLOSUM30to the hydrophobic branch in the HSDM dendrogram.

8.5 1.8 30.6 BLOSUM40
The relative entropy (Equation 4) of the HSDM of 0.28 bit 3.0 0.2 29.5 RISLER

is higher than the relative entropy of the SDM 0.22 bit. The 8.0 1.2 29.1 REMOTEHOMOS
6.0 2.0 28.8 BLOSUM50matrix derived from homologous pairs appears to have a higher

10.0 1.0 28.8 PAM250information content than matrices derived from homologous
5.5 0.8 27.8 BLOSUM62and analogous pairs. 9.5 1.2 25.5 JOHNSON
3.5 5.5 14.5 COMBINEDMatrix performance test
3.0 3.0 8.4 ANALOGOUS

Gap penalties are optimized for several matrices in order to
obtain the maximum average alignment accuracy (Table V). aOpen, gap opening penalty; Extension, gap extension penalty; % Correctly,

pairs found to be aligned in the structure alignment as well in the sequenceThe top-ranking matrices are the HSDM and SDM. On average
alignment in % of the length of the structure alignment; Name, name ofthey align ~34 and 33% of the alignment correctly. A similar
matrix. Matrices used: PAM250 (Dayhoff et al., 1978), RISLER (Rislerperformance is shown by the GONNET matrix (Gonnet et al., et al., 1988), GONNET (Gonnet et al., 1992), BLOSUM30, BLOSUM40,

1992) and the NAOR matrix (Naor et al., 1996), with ~33 and BLOSUM50, BLOSUM62 (Henikoff and Henikoff, 1992), NAOR (Naor
31% correctly aligned. On average there is no clear gap et al., 1996), REMOTEHOMOS, COMBINED, ANALOGOUS (Russell

et al., 1997), JOHNSON (Johnson and Overington, 1993).between the top-ranking matrices, but for single protein pairs
there are several cases where one matrix yields a much
better performance than the other (Figure 2). The correlation the top-ranking matrices showed similar averages, with the

GONNET matrix performing best.coefficient between GONNET and HSDM is 0.87.
The alignment accuracy results collected here are comparable The results above refer to the parameter set that gives the

best alignment performance on average over the whole set ofto those published by Vogt et al. (1995). In their study,

548



Structure-derived substitution matrices

Fig. 4. Alignment accuracy of analogous and homologous structural pairs.
Almost 50% of the analogous structural pairs show a performance �5%.
Homologous structural pairs show an even distribution over all ranges of
performance.

Table VI. Average performance of the top-ranking matrices excluding
analogous structures from the test seta

Fig. 2. Alignment accuracy of HSDM and GONNET matrices for different
Open Extension % Correctly Name

sequence pairs. Alignments are calculated using optimum gap penalties on
average over all of the data set. There is some correlation between the two

19.0 0.8 43.2 HSDM
matrices, but in some cases they perform differently.

7.0 0.6 42.8 SDM
9.0 0.7 41.6 GONNET

aFor details, see Table V.

These results show that it is more problematic to align
analogous proteins. We investigated how the performance
changes after analogous pairs are excluded from the test set
(Table 6). The average alignment accuracy increases by ~10%.
The average optimum gap penalties do not change much. Also,
the ranking of the matrices remains the same.

Alternative alignments
Multiple solutions for structure alignments can be found inFig. 3. Structures 1hce and 4fgf. Using the average optimum gap penalties

over the whole data set, the GONNET matrix aligns 65% of the alignment 88% of the 122 protein structure alignments. For 63% more
correctly, whereas HSDM does not correctly align any residue. Optimizing than four solutions exist. To estimate the similarity of these
the alignment accuracy for this pair, HSDM achieves 74% (open penalty alternative alignments, they are grouped into different clusters8.0, extension 5.0) and GONNET 72% (open penalty 11.0, extension 0.4).

(Lackner, Koppensteiner, Sippl, Domingues, in preparation).Black residues correspond to structurally equivalent and correctly aligned in
sequence alignment, using HSDM and optimum parameters for this pair and Half of the pairs show more than one cluster, one third more
dark gray to residues structurally equivalent and not correctly aligned. than two clusters.

Owing to this finding, it is necessary to consider all the
protein pairs. Another question is what the alignment accuracy alternative solutions L1 . . . Ln when measuring the accuracy
is that can be obtained by optimizing parameters for each pair of a sequence alignment. The one that shares the highest number
individually. Here, the average performance increases ~15% of correctly aligned residues with the sequence alignment is
for the HSDM, SDM and GONNET matrices. For some protein Lx. In 20% of the alignments, Lx is different from L1, the
pairs a large difference in alignment accuracy can be observed. alternative with the highest number of equivalent residues.

The structure alignment of the pair hisactophilin and Using only L1 in the performance test, the average performance
fibroblast growth factor has several small gaps (see Figure 3). decreases for all of the matrices by 3–4%.
The average best-performing gap penalties are too high to
allow the opening of the multiple gaps. Using the optimized Discussion
parameters for this case the opening penalty is much lower The goal of this study was to investigate the possibility of
and a better alignment is achieved. deriving substitution matrices suitable for sequence alignment
Evolutionary relationship of sequences of distantly related sequences. We derive matrices based on a

data set of 122 structure alignments. The superimpositions areThe pairs of proteins used for testing can be classified either
as homologous or as analogous. It is interesting how good produced considering the Cα distances as well as the orientation

of the side chains. Matrices are derived from structurallyanalogous pairs can be aligned, as no evidence of an evolution-
ary relationship can be found for these cases. Here we find equivalent residues of homologous or analogous protein pairs.

Two amino acid substitution matrices are derived. One isthat there is a clear difference in the distribution of alignment
accuracy between these two groups (Figure 4). In almost half calculated from the whole data set of protein structure align-

ments, SDM. The second, HSDM, is computed after proteinsof the analogous structures not a single amino acid pair can
be aligned correctly. This only happens in �10% of the of unclear evolutionary relationship are excluded from the data

set. The information content of HSDM is higher, although thehomologous proteins. Differences in alignment accuracy
between analogous and homologous proteins have also been total number of observed substitutions is 30% smaller than

those of SDM. Also, the average alignment accuracy increasesobserved by Russell et al. (1998).
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Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N., Weissig,H.,(Table 5). A similar clustering of substitution values can be
Shindyalov,I.N. and Bourne,P.E. (2000) Nucleic Acids Res., 28, 235–242.observed in both matrices (Figure 1).

Boutonnet,N.S., Rooman,M.J., Ochagavia,M.E., Richelle,J. and Wodak,S.J.
These structure-derived substitution matrices, and also previ- (1995) Protein Eng., 8, 647–662.

ously published matrices, are applied in sequence comparisons Dayhoff,M.O., Schwartz,R.M. and Orcutt,B.C. (1978) In Atlas of Protein
Sequence and Structure, vol. 5, suppl. National Biomedical Researchof sequences at the border of detectable similarity. The accuracy
Foundation, Washington, DC, ed. Dayhoff,M.O., pp. 345–352.of the sequence alignments is evaluated by comparison with

Domingues,F.S., Lackner,P., Andreeva,A. and Sippl,M.J. (2000) J. Mol. Biol.,structure superimpositions. The best average alignment accu- 297, 1003–1013.
racy is observed with the new matrices HSDM and SDM, Felsenstein,J. (1985) Evolution, 39, 783–791.

Feng,Z.K. and Sippl,M.J. (1996) Folding Des., 1, 123–132.although the difference from the other top-ranking matrices
Flöckner,H., Domingues,F.S. and Sippl,M.J. (1997) Proteins, Suppl 1, 129–GONNET and NAOR is small (Table 5).

133.A closer investigation of the top-ranking matrices shows
Godzik,A. (1996) Protein Eng., 5, 1325–1338.

that the GONNET matrix performs fairly well in the alignment Gonnet,G.H., Cohen,M.A. and Benner,S.A. (1992) Science, 256, 1433–1445.
of distantly related sequences. It was based on exhaustive Gotoh,O. (1982) J. Mol. Biol., 162, 705–708.

Henikoff,S. and Henikoff,J.G. (1992) Proc. Natl Acad. Sci. USA, 89,matching of an entire protein sequence database, resulting in
10915–10919.1.7�106 sub-sequence matches. In contrast to this large data

Henikoff,S. and Henikoff,J.G. (1993) J. Mol. Biol., 233, 716–738.set, only 77 protein structure comparisons are used to derive Johnson,M.S. and Overington,J.P. (1993) J. Mol. Biol., 233, 716–738.
HSDM. This demonstrates that structure alignments provide Kyrpides,N.S. (1999) Bioinformatics, 15, 773–774.

Morgenstern,B., Dress,A. and Werner,T. (1996) Proc. Natl Acad. Sci. USA,a good source to derive substitution matrices. The good
29, 12098–12103.performance of the NAOR matrix was not expected by its

Naor,D., Fischer,D., Jernigan,R.L., Wolfson,H.J. and Nussinov,R. (1996)authors (Naor et al., 1996). Our data show that it is suitable
J. Mol. Biol., 256, 924–938.

for sequence alignments of distantly related sequences. Needleman,S.B. and Wunsch,C.D. (1970) J. Mol. Biol., 48, 443–453.
For several pairs the alignment accuracy using GONNET Orengo,C.A., Michie,A.D., Jones,S., Jones,D.T., Swindells,M.B. and

Thornton,J.M. (1997) Structure, 5, 1093–1108.and HSDM is completely different (Figure 2). Also in several
Pearson,W.R. (1991) Genomics, 11, 635–650.cases no correct sequence alignment is obtained when average
Pearson,W.R. (1995) Protein Sci., 4, 1145–1160.optimum gap penalties are used. As an example, it is shown Pearson,W.R. and Lipman,D.J. (1988) Proc. Natl Acad. Sci. USA, 85, 2444–

how the alignment accuracy could be improved enormously 2448.
Risler,J.L., Delorme,M.O., Delacroix,H. and Henault,A. (1988) J. Mol. Biol.,by applying different gap penalties (Figure 3). It has been

204, 1019–1029.reported previously that the choice of gap penalty and substitu-
Russell,R.B., Saqi,M.A.S., Sayle,R.A., Bates,P.A. and Sternberg,M.J.E. (1997)tion matrix used considerably affects the sequence comparison

J. Mol. Biol., 269, 423–439.
results (Henikoff and Henikoff, 1993; Johnson and Overington, Russell,R.B., Saqi,M.A.S., Bates,P.A., Sayle,R.A. and Sternberg,M.J.E. (1998)
1993; Pearson, 1995; Vogt et al., 1995). The results obtained Protein Eng., 11, 1–9.

Sanchez,R. and Sali,A. (1997) Proteins, Suppl 1, 50–58.in this study reiterate one of the basic problems of sequence
Scharf,M., Schneider,R., Casari,G., Bork,P., Valencia,A., Ouzounis,C. andalignment: if gap penalties are kept constant over all of the

Sander,C. (1994) Proceedings 2nd International Conference on Intelligentsequence, the biologically most meaningful alignment often Systems for Molecular Biology (ISMB), 2, 348–353.
cannot be found. It would be interesting to investigate the Smith,T.F. and Waterman,M.S. (1981) J. Mol. Biol., 147, 195–197.

Teichmann,S.A., Chothia,C. and Gerstein,M. (1999) Curr. Opin. Struct. Biol.,alignment quality of algorithms that do not require gap penalties
9, 390–399.(Morgenstern et al., 1996) or use a position-dependent gap

Vogt,G., Etzold,T. and Argos,P. (1995) J. Mol. Biol., 249, 819–831.penalty (Flöckner et al., 1997; Sanchez and Sali, 1997).
Our approach provided us with a high-quality data source Received February 25, 2000; revised June 20, 2000; accepted June 26, 2000

to observe amino acid substitutions. The matrices derived here
are among the best-performing ones, although they are based
on a fairly small number of amino acid replacements. Further
improvements could be achieved by collecting data from
additional homologous structure alignments. Finding a way to
estimate which of the alternative structure alignments is the
biologically most meaningful might also improve the quality
of the matrices.

The matrices can be downloaded from our web site at
http://www.came.sbg.ac.at.
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