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Aim of this work is to assess the informativeness of
protein dynamics in the detection of similarities among
distant homologous proteins. To this end, an approach to
perform large-scale comparisons of protein domain flex-
ibilities is proposed. CONCOORD is confirmed as a
reliable method for fast conformational sampling. The
root mean square fluctuation of alpha carbon positions in
the essential dynamics subspace is employed as a measure
of local flexibility and a synthetic index of similarity is
presented. The dynamics of a large collection of protein
domains from ASTRAL/SCOP40 is analyzed and the
possibility to identify relationships, at both the family and
the superfamily levels, on the basis of the dynamical fea-
tures is discussed. The obtained picture is in agreement
with the SCOP classification, and furthermore suggests
the presence of a distinguishable familiar trend in the
flexibility profiles. The results support the complementar-
ity of the dynamical and the structural information,
suggesting that information from dynamics analysis can
arise from functional similarities, often partially hidden
by a static comparison. On the basis of this first test, flexi-
bility annotation can be expected to help in automatically
detecting functional similarities otherwise unrecoverable.
Keywords: ASTRAL/SCOP/CONCOORD/Essential
Dynamics/domain flexibility/molecular simulations

Introduction

A central problem in protein studies is inferring functional
analogies from sequence or structure similarities. At a
sequence level, it was demonstrated that the goal of detecting
similar among non-similar structures and inferring homology
between proteins with more than 35–40% of residue identity
is achievable without additional information. Below 30% of
the residue identity for an average 100 residue proteins, there
is a rapid transition to a more difficult problem and a sudden
explosion of false positives in homology detection (Rost,
1999). When tertiary structures are available, the employ-
ment of structural alignment, supported by accurate statistical
estimates, allows to detect similarities and derive high-
quality sequence alignments. Anyway the accuracy of the
most sensitive methods is comparable to reliable sequence-
based methods, therefore highlighting a similar tendency in
reporting false-positive for difficult structural comparisons

(Pearson and Sierk, 2005). This evidence suggests the need
to employ additional information to improve protein
comparison.

Structural flexibility is essential for most of the proteins to
perform their biological activity (Gerstein et al., 1994) and it
often highlights functional specificities. Therefore, the
additional source of information from the protein intrinsic
flexibility looks promising to detect similarities.

Experimental information on flexibility in the form of
structural fluctuations can be retrieved by nuclear magnetic
resonance (NMR) and X-ray diffraction techniques. The
former has been increasingly employed, but the range of
structures that have been determined is still relatively small;
additionally, the physical interpretation of the experimental
data is often difficult. The most widely employed experimen-
tal measure of atomic fluctuations comes indeed from X-ray
crystallographic B-factors (Frauenfelder et al., 1979). These
describe the isotropic mean square displacement of the atom
from its average position. Therefore, the represented flexi-
bility includes contributions from internal protein motions,
from translation and rotation of the whole molecule in the
unit cell, from relative translation of the unit cell itself;
additionally, lattice distortion and refinement errors can
affect the values. Consequently, the employment of B-factors
as a direct measure of intrinsic molecular flexibility can be
problematic. The presence of different sources of motion,
aside from the internal flexibility, suggests carefulness in the
functional interpretation. Moreover, by comparing compu-
tational simulation of a single molecule in explicit solvent
with that of a whole unit cell, recent studies demonstrated
that crystal packing is greatly affecting the flexibility
(Eastman et al., 1999; Meinhold and Smith, 2005). This
effect is stronger for exposed loops and less structured
regions, which are often involved in functional activity. Very
recently, it was also demonstrated that B-factor flexibility is
highly correlated with local protein packing density,
suggesting that the informativeness of this index is compar-
able to that of the mean atomic coordinates (Halle, 2002).

Another avenue to derive protein flexibility is employing
molecular simulations, especially molecular dynamics (MD).
Explicit solvent simulations can generate thermodynamic
ensembles of structures representing the different states of
the native protein. Flexibility calculated from these ensem-
bles is not affected by crystal packing bias and is supposed
to properly describe solvent exposed region (Meinhold and
Smith, 2005). In practice, the descriptive power of the simu-
lations is limited by the timescale: several studies addressed
the problem of convergence of atomic fluctuations, highlight-
ing how nanoseconds simulations are suitable for description
of structured region, but insufficient to extensively sample
loop conformations (Hunenberger et al., 1995; Eastman et al.,
1999; Meinhold and Smith, 2005). Convergence on correlated
motions for non-local atoms would require extensive sampling
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up to microseconds scale (Meinhold and Smith, 2005). To
address this problem, a major interest has arisen for fast con-
formational sampling methods. These approaches try to obtain
reliable sampling of native ensembles within an affordable
computational time and indeed are suitable to derive simulated
flexibilities with acceptable accuracy (Tai, 2004).

Simulated flexibility has already been employed to investi-
gate the functionality of single proteins of interest, their
mutants or small collections of strictly related functional ana-
logous. These studies are mainly directed to highlight the
conservation of dynamical features across a fold (Grottesi
and Sansom, 2003) or a superfamily (Vreede et al., 2003), or
suggest a more complex combination of conservation and
specialization at the superfamily level (Pandini and Bonati,
2005). Recently, a promising approach to large-scale investi-
gation of flexibility has been proposed, which employs the
Gaussian network model (GNM) (Bahar et al., 1997), instead
of simulations. This approach has been extended to compari-
sons at the superfamily level (Maguid et al., 2005) and also
made available as a database resource (Yang et al., 2005).

Moreover, some studies have effectively correlated protein
flexibilities, as derived from normal mode analysis of the
elastic network model (ENM), to sequence conservation
among protein families (Zheng et al., 2005).

Therefore, it was demonstrated that inferring similarities
among proteins with the same functionality is often achiev-
able by comparison of their flexibilities. Questions arise if
this is a general rule and if simulated flexibilities can be
employed effectively for protein comparison, especially in
the cases of distant homologous proteins.

In this framework, the aim of this work is to perform an
analysis on the informativeness of a measure of protein flexi-
bility derived from molecular simulations.

To this end, a procedure is proposed for the analysis of
relationships among distant homologous proteins at the
domain level. This is aimed at a large-scale analysis and con-
sequently employs a fast conformational sampling method
and a simple and synthetic index of similarity between
domain flexibilities, calculated on the residue base.

To assess the reliability of this procedure, the dynamics of
a collection of protein domains from ASTRAL/SCOP40 was
analyzed and the possibility to identify relationships, at both
the family and the superfamily SCOP levels, on the basis of
the dynamical features is discussed. The discrimination
power of the procedure was also analyzed in relation to that
of some structure comparison methods on the same test set.

Materials and methods

Conformational sampling
The data on the local flexibility of each protein were
extracted from a collection of structures representing a stat-
istical ensemble in the neighborhood of the starting structure.
The ensemble was obtained by CONCOORD (de Groot
et al., 1997) runs. This is a computational method to generate
conformers satisfying a list of distance constraints derived
from a starting structure. The imposed constraints are a good
approximation for the upper and lower bound of each intera-
tomic distance and the stochastic sampling of the associated
values allows a fast generation of structures. For the calcu-
lation of interatomic distances, non-bonded cut-off radius

was set to the sum of vdW radii plus 4.00 Å and the minimal
number of distances per atom to 100. Secondary structure
assignment was made according to Kabsch and Sander
(Kabsch and Sander, 1983). Hydrogen atoms were not
included in the calculation. The maximum number of iter-
ations for the generation of a structure satisfying all distance
constraints was set to 500. For each protein, a collection of
2000 structures was generated.

Some selected domains were also simulated by MD. The
trajectories were generated and analyzed by GROMACS
3.2.1 (Berendsen et al., 1995; Lindahl et al., 2001). All struc-
tures were inserted in a SPC water (Berendsen et al., 1981)
dodecahedral box and simulated with periodic boundary con-
ditions. The dimension of the box was set to allow at least
0.8 nm between the protein and the box faces. Solvent was
relaxed with 5 ps MD simulation, during which the protein
degrees of freedom were restrained. After neutralizing the
systems with the appropriate number of counter ions, a short
minimization with steepest descent was performed up to con-
vergence on maximum force lower than 1000 kJ/mol nm.
The resulting systems were simulated for 16 ns with the
GROMOS96 43a2 version of the GROMOS force field as
available in the GROMACS package. Simulations were per-
formed in the NPT ensemble and long-range electrostatic
interactions were calculated with the particle mesh Ewald
summation method (Darden et al., 1993) to gain a more
accurate description. Van der Waals interactions were
described by a 6–12 Lennard–Jones potential with distance
cut-off at 0.9 nm; neighbor lists were employed with a list
cut-off of 0.9 nm and update frequency every 10 steps. A
thermal bath was independently coupled with protein and
solvent by employment of a Berendsen thermostat at 300 K
and a coupling period of 0.1 ps. Internal degrees of freedom
of water were constrained by the SHAKE algorithm
(Ryckaert et al., 1977), while all bond distances in the
protein were constrained by the LINCS algorithm (Hess
et al., 1997). To allow a wider time step, the interacting site
method (Feenstra et al., 1999) was employed; therefore, it
was possible to increase the integration step up to 4 fs and
obtain stable simulations. During simulations, configurations
and velocities were recorded every 1 ps.

Flexibility analysis and representation
The extraction of the data on the local flexibility of each
protein from CONCOORD ensembles and MD simulations
was performed after essential dynamics (ED) analysis. ED
analysis is a widely applied technique based on principal
component analysis (PCA) of conformational ensembles
(Amadei et al., 1993). It is aimed to extract informative
directions of motion in a multidimensional space and allows
to both reduce the overall complexity of the simulation and
isolate the important motions with a putative functional
meaning. ED application involves: diagonalization of the
covariance matrix of the positional fluctuations of atoms;
projection of original data on the eigenvectors to generate 3N
principal components; separation of the simulation space
in the more informative ‘essential subspace’ and in the
constrained subspace, by evaluating the amount of variance
contained in the first eigenvectors.

Only the Ca atoms were included in the analysis, because
it was demonstrated that this reduction of the analysis can
retain all the relevant information needed to separate the
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essential subspace and identify the important modes in the
protein dynamics (Amadei et al., 1993). In the definition of
the dimensionality of the essential subspace, two criteria
were employed: the fraction of total motion described by the
reduced subspace and the distribution of motion along the
eigenvectors. The former, computed as the sum of eigen-
values for the included eigenvectors and expressed as percen-
tage of the total fluctuation of the Ca atoms, describes the
amount of variance retained by the reduced representation of
the system space; the latter is evaluated by projection of
motion on the single directions and calculation of the corre-
sponding distributions of motion.

The local flexibility of each protein was then reported as
the root mean square fluctuation (RMSF) on the positions of
the Ca atoms as calculated from the coordinate of the system
in the essential subspace. The RMSF of the Ca atom i is a
measure of the deviation between its position, ri, and its
time-averaged position:

RMSFðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2

i l� kril
2

q

with , . . .. indicating a time-average.
For some selected domains, RMSF profiles were also

derived from the crystallographic B-factors, Bi, using the
relation (Hunenberger et al., 1995):

RMSFðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3

8p2
Bi

r

Flexibility comparison
To run the comparison among protein domains, the vectorial
representation of the flexibility obtained by the residue-based
RMSF was employed. For each pairwise comparison, the
two structures were aligned and the structural equivalent pos-
itions in the alignment were annotated. Then, the RMSF
vectors were filtered to include only these positions. Two
programs for structural alignment were employed: the standa-
lone version of the DALI method (Holm and Sander, 1993)
called DALILite (Holm and Park, 2000), and Structal
(Gerstein and Levitt, 1998).

A median-based method to detect outliers (Iglewicz and
Hoaglin, 1993) was used. First, the median of the Ca RMSF,
x̃, was determined and then the median of absolute displace-
ments (MAD) from the median was determined. A Mi value
for each RMSF was calculated as follows:

Mi ¼ 0:6745
xi � ~x

MAD

where xi is the Ca RMSF for the ith residue and multiplication
by 0.6745 is used because the expected value of MAD is
0.6745s for large sample sizes. A Mi value of 3.5 was used to
define the outliers to be excluded from the comparison. For
the pair of resulting RMSF vectors, the R Pearson correlation
coefficient between the two vectors was calculated:

rðx; yÞ ¼
P

iðxi� , x .Þðyi� , y .ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi� , x .Þ2

P
iðyi� , y .Þ2

q

where ,... indicates the average value. The resulting value
was taken as the index of flexibility correlation (FC) between
the pair of domains.

Hierarchical cluster analysis with complete linkage
method (Everitt, 1974) was performed on the FC and RMSD
matrices. Since FC is a measure of proximity (0 ¼ different
flexibility, 1 ¼ same flexibility), FC was converted into a
distance index (through the transformation of 1-FC).

Statistical significance
To assess the amount of information in the comparison, the
K correlation index (Todeschini, 1997) was calculated. This
is an index of correlation among a set of variables. It can be
derived from a correlation or covariance matrix of the vari-
ables from this relation:

K ¼
P

m jlm=
P

m lmj � 1=p

2ð p� 1Þ=p
� 100

where the K index is computed after principal component
analysis on the matrix. lm are the eigenvalues and p is their
number. The index is expressed as percentage of correlation,
where 0% indicates complete independence of the variables
and 100% the total linear dependence.

In this application, the K correlation was derived from: the
FC matrix including all the inter-domain comparisons; a set
of FC matrices representative of a random background distri-
bution; a model similarity matrix associated to an hypotheti-
cal optimal separation of proteins in families as derived from
the SCOP classification.

Analysis of performance
The performance of the FC similarity index was assessed by
receiver operating characteristic (ROC) curves (Gribskov and
Robinson, 1996) and compared with the performance of a
pure geometrical index, the root mean square displacement
(RMSD) on equivalent Ca atoms as identified by structural
alignment.

The ROC curve is a widely employed statistic to evaluate
the ability of a classifier to adhere to a gold standard.
According to the gold standard, a group of comparisons are
annotated as true (T) or false (F), if they satisfy or not a
relationship criterion. The comparisons are then evaluated by
the classifier and sorted by a quality measure (score). Given a
threshold value for the quality measure, all the comparisons
above this value are predicted as positive (showing a relation-
ship). Comparisons positive for the classifier and true for the
gold standard are denoted as true positive (TP), while com-
parisons that are positive but false are labeled false positive
(FP). For each classifier, the true positive rate (TPR) and false
positive rate (FPR) are calculated for a range of thresholds
and the corresponding curve is plotted in a (TPR, FPR) plane.
TPR is the ratio of TP on all positive comparisons, while FPR
is the ratio of FP on all negative comparisons. For a reliable
method, it is desirable to maximize TPR while minimizing
FPR. The best method would have a TPR ¼ 1 and FPR ¼ 0
for all thresholds: this translates to the ordinate axis in (TPR,
FPR) plane. A concise measure of the accuracy of the classi-
fier is given by the area under the curve (AUC), which is in
turn the probability of obtaining a correct classification.

In the assessment of the FC and RMSD indexes, the
SCOP classifications for family and superfamily were
employed as the gold standards for two independent tests. A
cutoff difference of 0.1 in AUC values was employed to
define that an index outperforms the other.
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Data processing and visualization
Graphs were generated using R 2.1.0 (R Development Core
Team, 2003) and MATLAB 7.1.0. Cluster analysis was per-
formed with MATLAB Statistical Toolbox 5.1. The analysis
of performance was carried out by employment of the ROCR
package (Sing et al., 2005). The molecular model image was
generated using PyMOL (DeLano, 2002).

Results

Test set selection
To test an approach for large-scale analysis of protein flexi-
bility, a test case that is representative of the structural infor-
mation available at this time in the on-line databases was
selected. Protein domains were extracted from the SCOP
database (Murzin et al., 1995) and, in particular, from the
ASTRAL/SCOP40 compendium (release 1.67), (Brenner
et al., 2000; Chandonia et al., 2002, 2004) which offers a
non-redundant set of protein domains with ,40% sequence
similarity. This gave the possibility to test the procedure on
distant homologous proteins.

In the SCOP hierarchy, families contain protein domains
that share a clear common evolutionary origin, as evidenced
by sequence identity (�30%) or extremely similar structure
and function, superfamilies consist of families whose proteins
share very common structure and function, and therefore there
is reason to believe that these are evolutionary related, folds
consist of one or more superfamilies that share a common
core structure, and finally, depending on the type and organiz-
ation of secondary structural elements, folds are grouped in
the four major classes: all a, all b, a/b and a þ b.

A group of 215 protein domains belonging to 8 folds in
the a þ b class were employed as the test set (Table I). Each
of the selected folds satisfied the following requirements:
containing a number of proteins ranging from 10 to 50 and
more than five families; possessing an average proteins/
families ratio higher than 2. In particular, the d.16 fold
(‘FAD-linked reductases, C-terminal domain’) was used to
discuss in more details some of the key methodological
choices, whereas the entire set was employed for a global
evaluation of the performance of the proposed procedure for
flexibility comparison. The choice of the d.16 fold was
motivated by the extensive literature on the role of flexibility
in the biological activity of its proteins. The PDB ID of

the d.16 domains and the ranges of residues included in the
study are reported in Table II. In this case, as the fold
includes 18 domains in 6 families belonging to a unique
superfamily, only the relationships among the flexibilities of
homologous domains belonging to the same family (intra-
family) or to different families in the same superfamily
(interfamily) can be analyzed. The 18 proteins account for
153 pairwise comparisons with 24 intrafamily (15.7%) and
129 interfamily (84.3%) pairs.

The domains belonging to this fold are generally located
at the C-terminus of flavoproteins devoted to redox reactions
of small substrates (Fraaije and Mattevi, 2000; Miura, 2001).
The fold is characterized, at one side, by a b-sheet of 4–5
strands that faces the active site and the FAD cofactor and,
on the opposite side, by a long a-helix and a varying number
of small a-helices (Fig. 1). This latest part is the most

Table II. The FAD-linked reductases C-terminal domain fold (d.16)

Family SCOP
ID

PDB
ID

Chain:residues

GMC oxidoreductases d.16.1.1 1GPE A:329–524
1N4W A:319-450
1JU2 A:294-463
1KDG A:513-693

PHBH-like d.16.1.2 1K0I A:174–275
1PN0 A:241-341

D-aminoacid oxidase-like d.16.1.3 1C0P A:1194–1288
1VE9 A:195–287
1EL5 A:218–321
1NG4 A:219–306

L-aminoacid/polyamine oxidase d.16.1.5 1S3E A:290–401
1B37 A:294–405
1F8R A:320–432
1PJ5 A:220–338
1SEZ A:330–441

GDI-like d.16.1.6 1D5T A:292–388
1LTX R:445–557

UDP-galactopyranose mutases d.16.1.7 1I8T A:245–313

Representative domains for method assessment are in italics.

Table I. Test set from ASTRAL/SCOP40

Fold SCOP
ID

No. of
superfamilies

No. of
familes

No. of
proteins

Cysteine proteinases d.3 1 10 22
Ribosomal protein S5
domain two-like

d.14 1 11 30

FAD linked reductases
C-terminal domain

d.16 1 6 18

Bacillus chorismate
mutase-like

d.79 7 11 25

ATP-grasp d.142 2 11 23
Protein kinase-like
(PK-like)

d.144 1 6 35

Ntn hydrolase-like d.153 2 6 33
C-type lectin-like d.169 1 6 29
Total number 16 77 215

Fig. 1. Cartoon representation of the monoamine oxidase B (PDB ID:
1SE3), taken as a reference for showing the d.16 fold characteristics. The
region encompassing the d.16 fold (residue A:290–401) is colored
according to the secondary structure attribution: a-helices in red and
b-strands in yellow. The flavin-adenine dinucleotide is rendered in green
sticks.
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variable in the different families. A certain number of con-
necting loops are exposed to the solvent, as is the helical
region for its majority, while only the b-sheet is in contact
with the multi domain assembly.

To investigate the structure and sequence similarity in the
d.16 fold, the domains were structurally aligned with
DALILite. In Fig. 2, a graph of the sequence alignment
score, calculated as the raw sum of the BLOSUM62
(Henikoff and Henikoff, 1992) scores for the structurally
equivalent positions, versus the DALI Z-score is reported for

each pairwise comparison. As expected from the choice of
ASTRAL/SCOP40 the sequence information is unable to
clearly discriminate between couples of proteins belonging
to the same or different families (see the zone of the graph
with intermediate sequence scores). The structural score
appears to be more effective in this task. However there are a
set of intrafamily comparisons that have lower DALI Z-score
than what is expected (in the range 3–7), and a small set of
borderline interfamily comparisons with Z-scores approach-
ing the cut-off of 9 that was proposed for identifying proteins
belonging to the same family (Dokholyan et al., 2002). This
picture suggests a set of domains with a clear structural
fingerprint, but also some cases that result difficult to be
classified only on the basis of their structure.

Conformational sampling and essential dynamics
The conformational space of each of the 215 domains in the
test set was sampled by CONCOORD (de Groot et al.,
1997). To assess the reliability of the obtained sampling, the
CONCOORD ensembles were compared with the results
from MD simulations. To this end a representative was
chosen that better summarizes the secondary and tertiary fea-
tures of each family in the d.16 fold. The selected candidates
are highlighted in italics in Table II. Each domain was
simulated for 16 ns (see Materials and methods section for
details).

The RMSD and total energy statistics for the six represen-
tatives are reported in Table III. From both RMSD and Total
Energy values it is evident that the proteins were stable
during the simulations. RMSD graphs (data not reported) and
visual inspection of the trajectory frames confirmed a general
stability of the simulations, with an equilibration stage
around 1 ns and a productive phase that encompassed

Fig. 2. Extent of sequence and structure similarities among the domains in
the ASTRAL/SCOP d.16 fold. For each pairwise comparison, the raw sum
of the BLOSUM62 scores for the structurally equivalent positions is plotted
against the value of DALI Z-score. Comparisons between pairs of proteins
belonging to the same family, as reported in SCOP, are shown as circles.
Interfamily comparisons are drawn with crosses.

Table III. Summary results for MD simulations and CONCOORD runs

SCOP
ID

PDB
ID

MD CONCOORD MD CONCOORD
versus MD

CONCOORD
versus B
factor

MD
versus
B factor

RMSD (nm) Total energy
(KJ/mol)

No. of
eigenvectors

Explained
variance (%)

RMSF
correlation

RMSF
correlation

RMSF
correlation

mean SD Mean SD Eigenvect.
1–3

Eigenvect.
1–8

d.16.1.1 1GPE 0.28 0.03 2393047 379 588 76.9 82.8 0.84 0.08 20.23
1JU2 510 77.6 0.25
1KDG 543 69.7 0.28
1N4W 396 67.5 0.28

d.16.1.2 1K0I 0.39 0.07 2289570 328 306 78.8 85.2 0.83 20.01 0.08
1PN0 273 74.5 0.57

d.16.1.3 1C0P 0.25 0.03 2215725 281 285 75.2 71.8 0.78 0.09 20.19
1EL5 312 78.7 0.21
1NG4 264 72.2 0.56
1VE9 279 74.2 0.36

d.16.1.5 1S3E 0.29 0.05 2221441 286 336 76.3 81.0 0.85 0.16 0.05
1PJ5 357 78.8 0.47
1F8R 339 74.8 0.10
1SEZ 336 71.8 0.22
1B37 336 79.7 0.02

d.16.1.6 1D5T 0.28 0.04 2199392 273 291 80.3 73.6 0.86 0.39 0.27
1LTX 321 77.5 0.52

d.16.1.7 1I8T 0.34 0.06 2216258 281 207 84.0 85.1 0.67 0.52 0.42

Representative domains for method assessment are in italics.
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the remaining 15 ns. The thermal bath was effective in
keeping the temperature around 300 K (data not reported).

Both the CONCOORD data and the MD trajectories were
subjected to ED analysis to extract the information on the
flexibility.

In the choice of the dimensionality of the essential sub-
space the number of directions to retain was chosen indepen-
dently for the two methods and, in each method, the same
number of directions was used for all the domains. As shown
in Table III, the ensembles of 2000 structures generated by
CONCOORD show a neater separation of the essential sub-
space, with displacements in the range 75–84%, already in
the first three directions of motion, while the MD simulations
require the inclusion of eight directions to explain a similar
amount of conformational flexibility (displacements in the
range 72–85%). This is a general result for CONCOORD
runs: an ensemble of 500–1000 structures is usually enough
to obtain a good sampling of the neighborhood of the start-
ing structure and this is usually reflected by high values for
the index of convergence (de Groot et al., 1997).

The distribution of motion along the eigenvectors (data
not shown) confirmed that all the excluded directions regis-
tered only small fluctuations associated with uninformative
high frequency modes. The reduction was indeed effective in
capturing the largest and most informative motions.

Flexibility analysis and representation
A residue-based description of the local flexibility was
obtained by calculating the RMSF values for the positions of
the Ca atoms. The analysis was performed on the structures
after their projection into the essential subspace. Figure 3
reports the RMSF graphs for each family representative in
the d.16 fold with the RMSF values from both the
CONCOORD and MD ensembles. With the exception of the
1K0I domain, in all the cases along the MD trajectories there
is a lower extent of fluctuation. Despite this, for all proteins,
there is a good agreement in the location of the highest
mobile peaks and the relative extents of residue flexibility.

The correlation coefficients between the RMSF vectors
obtained by the two methods are reported in Table III. With
the exception of 1I8T, the average correlation is 0.83, with a
range of values that is higher than the one reported in the
original CONCOORD paper (de Groot et al., 1997). This
better fitting can be the result of a considerably longer simu-
lation time with respect to the original work and it gives
an additional support to the reliability of CONCOORD as a
conformational sampling method.

To compare flexibilities obtained from molecular simu-
lations to those from crystallographic data, also the RMSF
derived from the X-ray B-factors (see Materials and methods
section) for the representative domains were included in
Fig. 3 and the correlation coefficients with respect to RMSF
values obtained by both the computational methods were col-
lected in Table III. From the visual analysis, it appears that
the B-factors describe an extremely reduced extent of fluctu-
ation with respect to both the MD and the CONCOORD
simulations for all the domains. Moreover, noticeable differ-
ences are observed also in the location and the relative
height of some fluctuation peaks, particularly in the most
flexible regions.

This lack of agreement is quantitatively confirmed by the
correlation coefficients. These show a slightly better fit with

the MD data, in some cases, and with the CONCOORD data,
in others. On the whole, they indicate that poor (or none)
correlation exists for the test set domains between RMSF
from crystallography and those from simulation in solution.
From this analysis, it is also expected that RMSF derived by
the B-factors might not be able to discriminate flexibilities of
different domains.

A further observation emerges by comparing the RMSF
graphs from all the three methods with the secondary struc-
ture assignment (Kabsch and Sander, 1983) schematically
reported in Fig. 3. As expected, some of the high fluctuation
peaks obtained by simulation methods correspond to the loop
regions. However, in many cases, also a helices as well as
supersecondary structures including helices and loops are
characterized by significant fluctuations. The mean flexibility
of each secondary structure element (Table IV) indicates
that, while B-factors describe a constrained and uniform dis-
tribution of residue fluctuations in the different secondary
structure elements, simulation methods (and particularly
CONCOORD) find that helices have a significant flexibility
that is intermediate between the more mobile loops and the
constrained strands. The expected relative order of flexibility
associated to the secondary structure annotation is therefore
reproduced by the mean and the median values of the calcu-
lated RMSF.

It has to be noted that the order of flexibility found for
different secondary structure elements has not been intro-
duced artificially by CONCOORD constraints. Indeed, the
evaluation of correlation between flexibility and the number
of constraints imposed on each residue (Supplementary
Material, Table SI) shows lack of correlation between the
two indexes. In this table, the correlation coefficients are
reported for constraints that characterize the secondary struc-
ture class, according to CONCOORD 1.2 (i.e. tight phi/psi,
loose phi/psi, secondary structure, sheet restrictions).
Moreover, the program parameters that define the upper and
lower distance limits for atoms in the same secondary struc-
ture element (obtained from MD analysis by de Groot and
coworkers) have same magnitude for pairs of atoms in
strands or helices.

Structural alignment of d.16 domains
Before performing the comparisons, the d.16 domains were
structurally aligned with DALI (Holm and Sander, 1993), as
it is acknowledged as one of the best performing structural
alignment methods (Sierk and Pearson, 2004).

The domains in the test set show different degrees of
structural equivalence when all-against-all pairwise compari-
sons are performed. For the majority of these, the two pro-
teins have a large portion of the structure (higher than 60%)
that is alignable. On the contrary, according to the SCOP
classification, among all possible pairwise comparisons for
proteins of the d.16 fold, there are more interfamily (84.3%)
than intrafamily (15.7%) comparisons. Therefore, a weak
correlation between the fraction of structurally aligned resi-
dues and the separation in families is observed. This is con-
firmed by Fig. 4 where, for each comparison, the percentages
of alignment with respect to the two domains are reported.
As expected, these values are high for both interfamily and
intrafamily comparisons.

It has to be noted that for the intrafamily comparisons,
beside an amount of alignable residues over 60%, it is
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evident that the two percentages tend to have similar values.
This indicates that the superposition includes a similar frac-
tion of the overall fold for each domain. On the contrary, in
the interfamily pairs, there are both largely aligned structures
and pairs of domains where one superimposes to only a part
of the other, suggesting that across the superfamily there are
structures that can be regarded as the extension of others
from a common structural core. This is in agreement with a
modular picture of the protein structure evolution (Kihara
and Skolnick, 2003).

Flexibility comparison
For each pairwise comparison of RMSF vectors, a FC index
was computed. After filtering on the basis of the structurally
equivalent positions, the representations of the domain flex-
ibilities are reduced to a pair of vectors of the same length.
To measure the extent of similarity, it is therefore straightfor-
ward to compute their Pearson correlation coefficient. It is
known that this index tends to overestimate correlation due
to the presence of outliers that, in the case of flexibility
profiles, are segments with unusually high flexibility (such

Fig. 3. RMSF profiles for the representative domain of each family in the d.16 fold as derived from MD simulations and CONCOORD runs (after reduction
by ED analysis) and from B-factors. Mi values for the RMSF are reported on the secondary y-axis (solid line: Mi ¼ 3.5). Residue numbering is reported
according to the original PDB deposition. The secondary structure attribution for each residue is specified: black square ¼ strand, white square ¼ helix, solid
line ¼ loop.
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as protein ends and some loops) (Hunenberger et al., 1995).
Therefore, a robust median-based statistic (see Materials and
methods section), proposed by Smith et al. (Smith et al.,

2003) to detect outliers in the B-factor distributions and suc-
cessfully employed by other authors (Radivojac et al., 2004),
was applied to the RMSF vectors to identify and discard
outliers before calculating the correlation coefficient. As
evidenced by the line in Fig. 3, the Mi cutoff value of 3.5,
proposed by Smith et al. (Smith et al., 2003) on the basis of
an extended statistics on flexibilities derived from B-factors,
allows to eliminate the few very high peaks that could affect
correlation (for example that around residues 440–460 in
the 1GPE domain and the N- and C-terminal regions in the
1K0I). Moreover, it was verified that, in our test set, the
choice of any Mi value in the range 3.0–4.0 does not affect
significantly the obtained correlation coefficients.

The resulting values of flexibility correlation (FC index)
are shown in Table V (in the lower half of the matrix),
where the intrafamily comparisons are highlighted in italics.
While the values range from 0.01 to 1.00, around 65% of the
correlations are higher than 0.6, where only the 13.7%
exceed 0.80. This suggests that there are extended similarities
across the entire set, but the fraction of highly correlated
domains is around the percentage of expected intrafamily
comparisons (15.7%).

Looking at the correlations within the families, a general
trend for stronger correlations than in the interfamily com-
parisons emerges. This is evident for the families 1 and 3,
partially for the families 5 and 6, but not at all for family 2.

Table IV. Mean flexibility of secondary structure elements

Secondary
structure

RMSF (nm)

CONCOORD MD B-factor

Mean SD Median Mean SD Median Mean SD Median

Strand 0.125 0.0725 0.104 0.104 0.0627 0.0863 0.0833 0.0247 0.0769
Helix 0.157 0.0900 0.135 0.104 0.0937 0.0850 0.0890 0.0259 0.0815
Loop 0.202 0.108 0.174 0.155 0.0966 0.132 0.0891 0.0273 0.0842

Fig. 4. Graph of the percentages of aligned residues for each pairwise
comparison in the d.16 fold, as obtained by the DALI method. Comparisons
between pairs of proteins belonging to the same family, as reported in
SCOP, are shown as circles. Interfamily comparisons are drawn with crosses.

Table V. FC (lower half ) and normalized RMSD (upper half) matrix from the DALILite alignment

1 2 3 5 6 7

1GPE 1JU2 1KDG 1N4W 1K0I 1PN0 1C0P 1EL5 1NG4 1VE9 1S3E 1PJ5 1F8R 1SEZ 1B37 1D5T 1LTX 1I8T

1 1GPE — 0.55 0.57 0.85 0.81 0.85 0.93 0.74 0.73 0.76 0.82 0.74 0.89 0.76 0.72 0.69 0.68 0.65
1JU2 0.47 — 0.71 0.84 0.72 0.78 0.84 0.88 0.78 0.71 0.81 0.86 0.83 1.00 0.81 0.82 0.80 0.63
1KDG 0.47 0.74 — 0.87 0.83 0.97 0.86 0.69 0.73 0.83 0.81 0.84 0.82 0.91 0.83 0.68 0.77 0.80
1N4W 0.72 0.75 0.68 — 0.74 0.76 0.79 0.83 0.75 0.76 0.80 0.80 0.84 0.76 0.87 0.68 0.80 0.84

2 1K0I 0.37 0.70 0.19 0.31 — 0.55 0.69 0.78 0.80 0.81 0.78 0.66 0.79 0.76 0.80 0.69 0.84 0.50
1PN0 0.36 0.64 0.56 0.68 0.55 — 0.65 0.72 0.75 0.74 0.72 0.72 0.65 0.66 0.77 0.74 0.72 0.79

3 1C0P 0.62 0.67 0.53 0.63 0.47 0.85 — 0.63 0.42 0.34 0.67 0.53 0.82 0.64 0.76 0.63 0.70 0.58
1EL5 0.08 0.54 0.63 0.48 0.41 0.81 0.90 — 0.45 0.58 0.74 0.49 0.73 0.63 0.72 0.70 0.69 0.56
1NG4 0.39 0.72 0.65 0.48 0.47 0.64 0.84 0.88 — 0.34 0.78 0.54 0.84 0.70 0.76 0.55 0.60 0.46
1VE9 0.32 0.61 0.66 0.67 0.58 0.82 0.87 0.85 0.82 — 0.80 0.52 0.71 0.83 0.78 0.63 0.66 0.63

5 1S3E 0.49 0.63 0.69 0.59 0.50 0.74 0.85 0.78 0.62 0.81 — 0.70 0.43 0.59 0.50 0.61 0.59 0.59
1PJ5 0.40 0.68 0.51 0.29 0.36 0.64 0.60 0.77 0.64 0.69 0.51 — 0.67 0.64 0.66 0.68 0.65 0.97
1F8R 0.40 0.71 0.42 0.65 0.57 0.71 0.75 0.52 0.73 0.71 0.90 0.45 — 0.56 0.49 0.59 0.58 0.66
1SEZ 0.31 0.61 0.56 0.61 0.22 0.73 0.71 0.69 0.73 0.70 0.77 0.69 0.69 — 0.56 0.63 0.78 0.50
1B37 0.31 0.39 0.42 0.53 0.26 0.64 0.57 0.75 0.62 0.63 0.81 0.56 0.79 0.71 — 0.66 0.54 0.66

6 1D5T 0.39 0.73 0.67 0.74 0.26 0.75 0.81 0.81 0.74 0.75 0.88 0.75 0.77 0.77 0.66 — 0.51 0.68
1LTX 0.19 0.83 0.63 0.65 0.50 0.83 0.77 0.68 0.59 0.72 0.80 0.74 0.80 0.89 0.65 0.87 — 0.65

7 1I8T 0.40 0.62 0.69 0.62 0.01 0.58 0.60 0.70 0.63 0.67 0.67 0.33 0.59 0.43 0.68 0.76 0.58 —

Intrafamily comparisons are in italics.
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While the latter seems to be a case of effectively uncorre-
lated dynamics, that represents a single exception within this
superfamily, in family 5 it looks as if the domains 1PJ5 and
1SEZ show a dynamics different from those of the other
three strictly related domains. There are also some sparse
cases of highly correlated interfamily pairs.

The overall picture is in good agreement with the SCOP
classification, and suggests the presence of a distinguishable
familiar trend in the flexibility profiles, that can be viewed as
the ‘dynamical fingerprint’ of the family.

A deeper insight into the ability of the FC index to detect
intrafamily relationships can be obtained by comparing the
FC index with an index of structural similarity. For this
analysis, the simple RMSD estimate was preferred to the
DALI Z-score on the basis of the observation that the latter
represents a statistical index based on a random background
distribution and consequently it cannot be directly compared
to the FC index. The normalized RMSD values are reported
in the upper half of the matrix in Table V. It clearly emerges
that the FC and the RMSD indexes have different informa-
tiveness. While the FC index shows the best discrimination
ability in identifying the pairs of domains belonging to
families 1 and 3, the RMSD clearly identifies lower intra
than interfamily distances for the families 2 and 6, partially
discriminates the 3 and 5 families and fails in family 1,
whose domains are structurally more similar to domains
belonging to other families.

An exploratory cluster analysis (see Materials and methods
section) was also applied to the complement of the FC
matrix and, for comparative purposes, to the normalized

RMSD matrix. The resulting dendrograms are reported in
Fig. 5a and b, respectively. As expected on the basis of the
results in Table V, the FC index is able to cluster family 1, 3
and 6, while it shows some difficulties in grouping the 1PJ5
and 1SEZ domains with the others of family 5 and fails in
clustering family 2. On the other hand, the RMSD well
identifies families 2 and 6, partially families 3 and 5 and
fails with family 1.

To have a rough insight into the effects of combining the
two indexes, the cluster analysis was applied to the linear
combination of the normalized RMSD and the complement
to FC index (coefficients 0.5). This combination gives the
best results, with only a single misplacement for the protein
1PJ5 from family 5 (Fig. 5c).

Despite semiquantitative, this other result suggests that
employment of the dynamical information is complementary
to structural comparison in detecting similarities among
distant homologous proteins.

A possible drawback in our analysis could be the depen-
dence of the results from the choice of a particular method
for the structural alignment. To verify this point, the same
procedure was applied to the d.16 set to derive the FC
indexes, by using the Structal method (Gerstein and Levitt,
1998) to align the domains before pairwise comparisons. At
difference with DALI that directly search for a good align-
ment, this method searches for transformations that optimally
position the two structures with respect to one another and
then use the transformation to find the best alignment. The
resulting FC data and, for comparison, the normalized
RMSD values are shown in Table VI. These values and

Fig. 5. Dendrograms from cluster analysis on the d.16 fold. Structural alignment obtained by DALI. (a) Results from the complement to the FC matrix; (b)
results from the normalized RMSD; (c) results from a linear combination of the two indexes with equal coefficients (0.5).
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the corresponding dendrograms from cluster analysis (Fig. 6a
and b) evidence that the FC index maintains its ability to
cluster families 1, 3 and 6, and also the difficulties in group-
ing the 1PJ5 and 1SEZ domains with the others of family 5,
as observed in the data obtained by using the DALI align-
ment. On the other hands, from this analysis it emerges that
the RMSD obtained by the Structal alignments have a

reduced ability to cluster domains belonging to the same
family. Therefore the different informativeness of the two
indexes (FC and RMSD) emerges more clearly than in the
analysis based on the DALI alignment. As a consequence,
also the linear combination of the two indexes shows a dis-
crimination ability similar to that of the FC index alone, as
shown by the dendrogram in Fig. 6c.

Table VI. FC (lower half) and normalized RMSD (upper half) from the Structal alignment

1 2 3 5 6 7

1GPE 1JU2 1KDG 1N4W 1K0I 1PN0 1C0P 1EL5 1NG4 1VE9 1S3E 1PJ5 1F8R 1SEZ 1B37 1D5T 1LTX 1I8T

1 1GPE — 0.25 0.30 0.66 0.53 0.46 0.63 0.52 0.55 0.60 0.96 0.56 1.07 0.52 0.90 0.51 0.58 0.41
1JU2 0.46 — 0.41 0.51 0.97 0.67 0.47 0.75 0.51 0.49 0.63 0.54 0.52 1.00 0.74 0.48 0.59 0.47
1KDG 0.44 0.77 — 0.63 0.55 0.68 0.54 0.50 0.52 0.58 0.65 0.51 0.43 0.62 0.87 0.62 0.51 0.54
1N4W 0.68 0.73 0.69 — 1.00 0.67 0.82 0.64 0.56 0.61 0.73 0.65 0.43 0.45 0.52 0.79 0.54 0.53

2 1K0I 0.36 0.45 0.44 0.43 — 0.27 0.66 0.76 0.46 0.74 0.69 0.81 0.48 0.40 0.71 0.56 0.69 0.30
1PN0 0.46 0.51 0.51 0.56 0.60 — 0.47 0.43 0.51 0.59 0.74 0.48 0.74 0.41 0.85 0.74 0.42 0.46

3 1C0P 0.07 0.48 0.33 0.53 0.54 0.66 — 0.58 0.18 0.19 0.55 0.36 0.57 0.45 0.74 0.51 0.59 0.61
1EL5 0.44 0.34 0.64 0.37 0.38 0.83 0.86 — 0.45 0.41 0.61 0.35 0.76 0.51 0.79 0.77 0.42 0.62
1NG4 0.35 0.63 0.33 0.39 0.50 0.39 0.85 0.87 — 0.33 0.50 0.38 0.54 0.49 0.50 0.33 0.45 0.36
1VE9 0.33 0.62 0.51 0.18 0.55 0.58 0.89 0.84 0.82 — 0.55 0.34 0.61 0.52 0.75 0.51 0.48 0.63

5 1S3E 0.42 0.41 0.48 0.58 0.49 0.62 0.87 0.78 0.57 0.83 — 0.63 0.44 0.60 0.36 0.28 0.55 0.64
1PJ5 0.31 0.72 0.58 0.31 0.41 0.31 0.56 0.75 0.73 0.64 0.70 — 0.50 0.45 0.58 0.49 0.51 0.66
1F8R 0.14 0.34 0.48 0.76 0.63 0.61 0.75 0.59 0.65 0.67 0.88 0.49 — 0.33 0.34 0.37 0.63 0.34
1SEZ 0.08 0.28 0.40 0.56 0.41 0.70 0.85 0.73 0.69 0.79 0.72 0.45 0.69 — 0.61 0.74 0.51 0.33
1B37 0.32 0.49 20.03 0.45 0.38 0.60 0.44 0.65 0.52 0.54 0.82 0.57 0.80 0.57 — 0.42 0.60 0.32

6 1D5T 0.16 0.55 0.65 0.72 0.46 0.71 0.85 0.67 0.74 0.85 0.47 0.74 0.76 0.74 0.73 — 0.28 0.45
1LTX 0.17 0.64 0.63 0.74 0.23 0.57 0.72 0.53 0.44 0.63 0.78 0.50 0.80 0.77 0.67 0.88 — 0.50

7 1I8T 0.39 0.65 0.68 0.26 0.32 0.59 0.54 0.52 0.45 0.53 0.69 0.43 0.49 0.49 0.64 0.39 0.33 —

Intrafamily comparisons are in italics.

Fig. 6. Dendrograms from cluster analysis on the d.16 fold. Structural alignment obtained by Structal. (a) Results from the complement to the FC matrix;
(b) results from the normalized RMSD; (c) results from a linear combination of the two indexes with equal coefficients (0.5).
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Significance
The statistical significance of the d.16 analysis was assessed
by employment of the K correlation index (see Materials and
methods section for details). This index returns a quantitat-
ive, synthetic and accurate measure of the extent of corre-
lation in the matrix. The value obtained for the FC matrix
based on the DALI structural alignment (Table V) is 60.7%
and for that based on the Structal alignment (Table VI) is
53.0%. This confirms a trend of extended similarities in the
dynamic features of the set. This was not obtained by
chance, as demonstrated by a random test, were a distribution
of 1500 random comparisons were generated by shuffling the
values in the original RMSF vectors, after the structural
alignment and vector filtering. With this approach, the set of
1500 similarity matrices was representative of the random
background distribution for flexibility comparisons among a
generic collection of proteins with the same structural align-
ments of the 18 in the test case. The K index was calculated
on each matrix and the K average value was 21.2+ 1.3%. A
consequence of this result is that the FC index can be viewed
as a quite informative measure of similarity.

In a second test, the K values for the FC matrices were
compared with an artificial model of optimal separation,
built on the basis of the SCOP classification. The model
similarity matrix was constructed by placing 1.0 on the diag-
onal, 0.85 for each comparison of two proteins from the
same family (given the observed distribution of inter and
intrafamily relationships within the d.16 SCOP fold) and 0.0
for all the other comparisons. The K value obtained for this
model is 60.0%. This indicates that the extent of similarity
described by the FC index is in quite good agreement with
what is needed to obtain the separation in families as
reported in SCOP.

Analysis of performance
To assess the performance of the proposed procedure for
flexibility comparison, a large scale analysis was performed
on the entire test set (Table I) by calculating the receiver
operating characteristic (ROC) curves (see Materials and
methods section) for the FC index. The performance was
also compared to that of the RMSD on equivalent Ca atoms,
as identified by DALI and Structal. This structure compari-
son index was chosen instead of the statistical indexes based
on random background distributions (the DALI Z-score or
the Structal P-value) to allow a direct comparability to the
FC index which is not a standardized measure. The discrimi-
nation abilities of the two indexes were evaluated

independently for the two SCOP classification levels of
family and superfamily, and the results are summarized in
Table VII by means of the synthetic area under the curve
(AUC) index.

It can be observed that the AUC values for the FC index,
AUC(FC), for each fold, derived either from the DALI or
the Structal alignment, are very similar. On the contrary, the
AUC(RMSD) values show a significant dependence on the
aligment method. In particular, accuracy differences up to
the 15% are observed for the attribution of domains to super-
families. This suggests the independence of the results of the
flexibility comparison from the structural alignment method.

In the comparison of the FC to the RMSD, it can be
observed that the relative performance of the two indexes
varies among the different folds. This results clearer by
examining the ROC curves for the two indexes, based for
example on the DALI structural alignment, as shown in
Fig. 7. In the figure, the curves for the eight SCOP folds are
grouped in three graphs, according to the relative degree of
accuracy of the indexes, as evaluated by the AUC values
reported in Table VII. Both in the classification of domains
belonging to different families (top graphs in Fig. 7) and to
different superfamilies (bottom graphs) the FC index outper-
forms the RMSD for some folds, shows a performance
similar to that of the RMSD for others, and results less per-
formant for the remaining. In general, the FC index exploits
a greater accuracy in discriminating domains belonging to
different superfamilies than to different families. The flexi-
bility information appears to have a major role in discrimi-
nating the domains belonging to the d.142 and the d.144
folds (the ATP-grasp and the Protein kinase-like folds,
respectively). For the d.16 fold, the comparison of the ROC
curves confirmed that the two indexes have a similar discri-
minating ability (with AUC values that differ ,10%).

Discussion

In this work, the informativeness of intrinsic protein flexi-
bility in the detection of similarities among distant homolo-
gous proteins was investigated.

In consequence of limitations arising from the employ-
ment of experimental flexibilities, molecular simulations
were chosen as the source of dynamical information and, in
view of large-scale applications, fast conformational
sampling methods were preferred.

Among those, a quite promising one is CONCOORD,
a fast and efficient method to generate ensembles of

Table VII. Analysis of performance: AUC values from ROC curve analysis

Alignment Assessment Index SCOP ID

d.3 d.14 d.16 d.79 d.142 d.144 d.153 d.169

DALI Family RMSD 0.91 0.91 0.91 0.97 0.79 0.94 0.95 0.97
FC 0.79 0.74 0.87 0.84 0.94 0.96 0.94 0.83

Superfamily RMSD 0.68 0.85 0.81 0.94 0.71 0.77 0.89 0.91
FC 0.68 0.61 0.76 0.83 0.85 0.90 0.92 0.79

Structal Family RMSD 0.96 0.94 0.96 0.99 0.92 0.96 0.99 0.98
FC 0.79 0.69 0.89 0.73 0.93 0.95 0.94 0.83

Superfamily RMSD 0.70 0.92 0.90 0.98 0.86 0.88 0.98 0.97
FC 0.64 0.57 0.73 0.81 0.79 0.90 0.91 0.78
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independent structures (Tai, 2004; de Groot et al., 1997).
Application studies reported the assessment of the method
and demonstrated its reliability for single cases of different
types of proteins (de Groot et al., 1997; Kleinjung et al.,
2000; Barrett et al., 2004). In this work, the reliability of the
method was further investigated: on one side, for the first
time, the assessment was extended to a superfamily with a
significant number of proteins, on the other side, this was
done by comparison with long MD simulations. The results
highlighted a good agreement between the RMSF profiles
derived from MD and CONCOORD, demonstrating that the
per-residue flexibilities are consistent in location and relative
amplitude (Fig. 3 and Table III). This suggests that
CONCOORD can effectively capture the essential feature
of the protein flexibilities with accuracy comparable to
traditional long MD simulations but with reduced compu-
tational effort; this fact also supports its employment for a
large-scale annotation of the protein flexibility.

A further confirmation of the choice of employing flexibil-
ities from molecular simulations instead of crystallographic
data arose from the comparison of the RMSF profiles derived
from the simulations and B-factors. The noticeable

differences that emerged in the RMSF profiles as well as the
poor correlation coefficients (Fig. 3 and Table III) suggested
a minor ability of the B-factors in discriminating the flexibil-
ities of the different domains. In fact, the d.16 fold dendro-
gram obtained by cluster analysis on the FC matrix derived
from the B-factors confirmed the lack of discrimination
ability of this source (Supplementary Material, Figure S1).

On the other hand, the secondary structure annotation is
commonly used for describing the local flexibility of a
protein structure, as the different constraints imposed by the
H-bonds network to the different secondary structure
elements can indeed be associated to different degrees of
residue fluctuation (Andersen et al., 2002). We proved that
the mean fluctuations obtained by molecular simulations, and
in particular by CONCOORD, do reproduce the relative
order that is expected on the basis of secondary structure
annotation (Table IV). However, the single RMSF profiles
(Fig. 3) demonstrated that a more detailed description of
the relative flexibilities of the different domain regions is
introduced by employment of simulated flexibilities.

As the calculated RMSF values can be regarded as a
vector of flexibility in the space of the protein residues,

Fig 7. ROC curves for the search results with the FC index (solid lines) and the RMSD from the DALI structural alignments (dotted lines) for the 8 folds in
the test set: d.3, red; d.14, orange; d.16, gold; d.79, yellow; d.142, green; d.144, cyan; d.153, blue; d.169, purple. Top: intrafamily comparisons; bottom:
interfamily comparisons. From left to right: ROC curves with AUC(FC) greater that, equal to and less than AUC(RMSD) values (see Table VII).

A.Pandini et al.

296

D
ow

nloaded from
 https://academ

ic.oup.com
/peds/article/20/6/285/2964610 by guest on 20 April 2024



protein–protein comparison can be performed by measuring
the similarity between flexibility vectors instead of the one
between amino acid sequences or tertiary structures. The vec-
torial representation looks suitable for the classical vector
operations such as the normalized internal product (the
Pearson correlation coefficient). This is a widely employed
measure of similarity that, with an appropriate filter for out-
liers (Smith et al., 2003), can be easily applied to vectors
with values on different scales and therefore allows to
compare RMSF for proteins with different global amplitude
of motion.

Because equivalent flexible regions are often located in
structurally equivalent parts of the proteins, the structural
alignment can be the appropriate framework to compare
protein dynamics (Pandini and Bonati, 2005). On this basis,
the structural alignment was employed to reduce the vectors
by selecting only the corresponding residues. Consequently,
the correlation coefficient of a pair of equivalent vectors
gave a synthetic measure of the extent of similarity between
the average motions of the two proteins.

The reduction due to the alignment did not affect dramati-
cally the original information because a large part of the
vectors were depleted of ,30% of their length. This guaran-
teed that the procedure was still performing a domain–
domain comparison and it was not reduced to the comparison
of the flexibility of local structures. Moreover, the relatively
low depletion guaranteed that, after filtering, the result of the
initial PCA was not distorted and the definition of the essen-
tial subspace preserved. It was also verified that the amount
of explained variance along each principal component was
evenly reduced by filtering and the order of the eigenvectors
maintained (results not shown). Additionally, it should be
noted that the non-equivalent positions in the structural
alignments did not belong preferentially to loop regions, as it
could be expected on the basis of their usual higher diver-
gence across the evolution; this is a remarkable result
because it is generally expected that the high loop flexibil-
ities do contribute to a large extent to the most informative
directions of motion, and it further confirms that the
excluded residues do not affect significantly the definition of
the essential subspace.

The inclusion of a structural alignment step may anyway
constitute a possible drawback in the procedure. First, the
results obtained may be influenced by the choice of a par-
ticular method for the structure alignment. Second, there is
the risk to insert a source of information from the structural
alignment in the model and therefore to add a bias to the
similarity index, or in the worst case, to reduce the flexibility
comparison to a structural comparison.

The first point was addressed by comparing the FC data
obtained for the d.16 fold on the basis of the DALI (Table V
and Fig. 5a) and the Structal (Table VI and Fig. 6a) align-
ments. The analysis showed a comparable ability of the FC
index in grouping domains belonging to the same family,
independently of the clustering ability of the corresponding
structural alignment method, as described by the RMSD
index (Figs 5b and 6b). More interestingly, the analysis of
the performances of the FC index on the entire test set
demonstrated that the accuracy of this index in discriminating
domains both at the family and the superfamily levels, as
synthetized by the AUC values, is conserved for the two
structural alignment methods (Table VII).

The question of the independent informativeness of the
flexibility index with respect to structural similarity indexes
can be simply confuted by comparing the flexibility index
and the RMSD for the d.16 set of pairwise estimates. The
correlation coefficient between the two indexes was 20.31
for the analysis based on the DALI alignment (20.33 for
that based on the Structal alignment).

It was hypothesized that an additional piece of information
from dynamics analysis could indeed arise from the func-
tional similarities, often partially hidden by a static compari-
son. This was demonstrated, in the case of families
belonging to the d.16 fold, by the discrimination ability of
the FC index that resulted particularly effective for the com-
parisons involving families 1 and 3. In fact, a deeper analysis
of the biological function of d.16 proteins shed light into
the reasons of a different degree of discrimination across the
families belonging to this fold. For domains belonging to
the GMC oxidoreducatases (family 1) and the D-aminoacid
oxidase-like (family 3) families a functional activity located
in the d.16 domain has been reported. For the cholesterol
oxidase, belonging to the family 1, two loops have been
identified which act as a ‘lid’ over the active site facilitating
binding of the substrates, and one of these loops is included
in the d.16 domain. Interestingly, the differences observed in
these loops’ flexibilities among proteins of different species
appear to translate into differences in substrate activity and
specificity, despite a high structural conservation of the
active site (Yue et al., 1999). Also, for the D-aminoacid oxi-
dases of the family 3 (1C0P and 1VE9), a loop located
within the d.16 domain has been devised as a ‘lid’ control-
ling the active-site accessibility and plasticity as well as the
increasing hydrophobicity of the cavity in the ‘closed’ con-
formation (Todone et al., 1997; Pilone, 2000). Conversely, in
most of the L-aminoacid/polyamine oxidase (family 5), the
entrance cavity is located at the opposite end of a long and
narrow channel leading to the catalytic site (Pawelek et al.,
2000; Binda et al., 2001; Binda et al., 2002; Edmondson
et al., 2004) and therefore the loop or helices’ mobility
associated to the substrate admission lies far from the d.16
domain. Similarly, for the FAD-containing aromatic hydro-
xylases (family 2), a complex catalytic mechanism has been
devised (Enroth et al., 1998; Ballou et al., 2005) that
involves large conformational changes in both FAD and
protein regions external to the d.16 domain to allow
substrates’ access to the active site.

The resulting picture suggested a hypothesis on the infor-
mativeness of the domain flexibility. When the biologically
relevant dynamics is embedded in the domain unit, the flexi-
bility is more informative and the natural selective pressure
leads to its conservation in the family. When this is not the
case, the protein accepts some ‘mutations’ in its ‘flexibility
code’. An example can be protein 1PJ5 that exploits a
dynamics different from those of the other domains in the
family 5 (see the FC indexes in Table V and Fig. 5a) leading
to a less satisfying detection of similarities within the family.
This supports the hypothesis of a fine-tuned conservation of
the dynamics that is inscribed in the sequence.

The comparative analysis of dendrograms from cluster
analysis on the FC and RMSD indexes obtained for the d.16
fold (Figs 5 and 6) also supported the complementarity of
the dynamical and structural information. In fact, for families
where a partial discrimination ability is just exploited by
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the RMSD, the FC index seemed to better group the domains
into the family. Conversely, where a poor structural simi-
larity as well as a poor clustering of the RMSD was observed
among the domains, the FC index was able to improve the
domains’ clustering.

Thus, the connection between flexibility and functional
similarities is evident in this test case, where distant homolo-
gous domains with also remarkable structural diversity are
correctly assigned to families by the FC index. To this
extent, flexibility annotation appears to be a promising tool
to support an automatic functional annotation in those cases
where a manual annotation is otherwise needed.

While on the d.16 fold the investigation was done for each
step of the procedure, the general performance of the FC
index was evaluated for a larger collection of proteins from
different folds (Table I). This allowed to extend the test to
assess the ability to discriminate similarities both at the
family and the superfamily levels.

The ROC curves confirmed an intrinsic discrimination
power of the FC index. This was slightly more efficient at
the superfamily level, suggesting that the role of dynamics
information can be of interest also at longer evolutionary dis-
tances. In agreement with the detailed result on d.16 fold,
the FC index had, for some cases, a performance similar to
that of the structural comparison index, whereas it was more
effective than a geometrical comparison for other cases (the
d.142 and the d.144 folds). It is expected that the degree of
relative accuracy would increase with an increasing role
of the flexibility in the biological activity.

In conclusion, comparison of domain flexibilities high-
lighted that dynamics may contribute to the detection of
similarities of distant homologous proteins. The results
suggested that flexibility can be regarded as complementary
to structural information and that it plays its major role when
the most informative motions detected within the domain
have a specific functional role. This additional level of infor-
mation, inaccessible by simple structural comparison, can be
employed to detect functional similarities otherwise
unrecoverable.

Due to the computational cost of MD simulations, the pro-
posed procedure has been designed on a fast sampling
method, but the FC index can be easily calculated from MD
trajectory data as well. This suggests the application of this
comparative approach to simulation databases when these
will be available (Tai et al., 2004).

Future directions opened by this work include, on one
side, the extension of this study to collect a proper statistics
and provide a standardized FC index and, on the other side,
the direct employment of the information about residue flexi-
bility to annotate sequences with known structure and then to
search the sequence space with this additional feature.

An additional development would be the search of
relationships between the regions with high degree of flexi-
bility and the occurrences in that regions of some character-
istic local structures to identify functional motifs.

Supplementary data

Supplementary data are available at PEDS online.
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